## **Definitions**

Angular displacement  $\theta$  indicates the angle through which an object has rotated. It is measured in radians.

Average angular velocity  $\omega$  is angular displacement divided by the time interval over which that angular displacement occurred. It is measured in rad/s.

Instantaneous angular velocity is how fast an object is rotating at a specific moment in time.

Angular Acceleration  $\alpha$  tells how much an object's angular speed changes in one second. It is measured in rad/s per second.

Angular acceleration and centripetal acceleration are independent. Angular acceleration changes an object's rotational speed, while centripetal acceleration changes an object's direction of motion.

## Relationship between angular and linear motion

The linear displacement of a rotating object is given by  $r\theta$ , where r is the distance from the rotational axis.

The linear speed of a rotating object is given by  $v = r\omega$ 

The linear acceleration of a rotating object is given by  $a = r\alpha$ .

## **Torque**

The torque is the force on a rotating object. It is found using the formula  $\tau = Fd\sin\theta$ .

If an object is in equilibrium then it experiences a net torque equal to 0.

Net Torque Problem Solving Procedure

- 1. Identify the objects providing the torque
- 2. Calculate your clockwise torque
- 3. Calculate your counterclockwise torque
- 4. a. If the object is balanced (in equilibrium), set your torques equal to each other.
- 5. b. If the object is not balanced, find the net torque on the object.

#### **Rotational Inertia**

Rotational inertia *I* represents an object's resistance to angular acceleration.

For a point particle, rotational inertia is  $MR^2$ , where M is the particle's mass, and R is the distance from the axis of rotation

#### **Newton's Second Law for Rotation**

An angular acceleration is caused by a net torque:  $\tau = I * \alpha$ 

Where T is Torque, I is moment of Inertia, and fish is angular acceleration.

# **Rotational Kinetic energy**

Objects that are spinning also have energy even if they are not moving forward at all. This rotational kinetic energy is calculated with the formula  $KE_{Rot} = \frac{1}{2}*I\omega^2$ .

Rolling Objects have both Linear Kinetic Energy and Rotational Kinetic Energy  $KE_{Total} = \frac{1}{2} *mv^2 + \frac{1}{2} *I\omega^2$ 

When we use our conservation of energy, we now have to include rotational energy as well!

$$PE_i + KE_i(Rotational) + KE_i(Linear) = PE_f + KE_i(Rotational) + KE_i(Linear)$$

# **Angular Momentum**

The angular momentum of a spinning object is found with the formula :  $L = I*\omega$ 

Just like linear momentum, angular momentum must be conserved if no external torque is applied.